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SUMMARY

The degree of linkage disequilibrium, D, between two loci can be estimated by
maximum likelihood from the frequency of diploid genotypes in a sample from
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An alternative approach which is only applicable to Drosophila is the iso.
lation of single chromosomes from natural populations against crossover-
suppressor stocks. These single chromosomes may thus be made homozygous
before establishing their allelic content (¢.g. Kojima et al., 1970; Mukai et al.,
1971). An equivalent procedure is to test cross individuals against a
marker stock. The technique of chromosome isolation, in particular, -
involves much more labour per observation, i.e. a diploid or a haploid
(chromosome) individual identified, and we may ask whether this labour is
justified in terms of improved accuracy of estimation of the disequilibrium,
This question was raised with me by Dr D. A. Briscoe, and an attempt is
made to provide an answer in this paper by predicting the sampling variance
of estimates of disequilibrium obtained by the alternative methods.

It is recommended that maximum likelihood (ML) estimation be used
in any such analysis of data, for even where numerical solutions are required
these can be obtained easily using relevant computer programs. (A
program specifically for handling the analysis of designs discussed in this

paper is available from the author.) Whilst the main results of this paper
R PR ~ 1 : LIS TR, __ X _ 1 2, 1.3
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TabLe 1
Expected frequencies and observed numbers for different genetic models

(a) Definitions of frequencies; chromosome identification

Chromosome AB Ab ’aB . ab Total
Expected Ju Siz Ja Jas
frequency  pg+D  p(l-g)—-D (l—p)¢—D (1=-p)(I—g)+D
Observed ny Ny gy . Ny n
numbers

(b) A codominant, B codominant: expected frequencies (yyy)

BB Bb bb
44 fh 2fnfre f1a
da  2fnfu 2fufes+2f1afu 2f;32f 28
aa S :1 forSea 23

(c) A codominant, B codominant: observed numbers
BB Bb bb Total
.AA N 11 N 13 -N 13 N 1
Aa N, 21 N 22 N 23 N; 2
aa N, 3t N 32 N 38 N; 3
Total N, N, N, N

Derived totals

Xy = 2N+ Nia+ Ny Xpa = 2N13+ Nig+Nog
a1 = 2Ng1+ N Nar;  Xog = 2N+ Nog+Npa

(d) A codominant, B dominant: observed numbers (expected frequencies are obtained by summing
columns 1 and 2 in (b))
B- bb Total
AA M 11 M 12 M 1+
Aa N Nag N;.

aa Na Nsa Ns.
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The variance-covariance matrix of the estimates is given by M1, where M
is a 3 x 3 matrix with elements m;;. The necessary derivatives, dy;,/dt;, are
given in table 2, and these can be used in (6).

ch gives identical solutions to maxi-
this paper to chromosomes we shall
ethod, and it appears to have been
stypic class is apportioned into the

e type; thus an AABb individual - TasLE 2
me, while AaBb individuals have an Derivatives of genotypic freq ies (yi;) Jor diploid model with both loci codominant
12/7) AB and ab chromosomes and with respect to the frequency of A(p), B(q) and D
ssomes, The equations are then BB Bb 5
' $0v:5/0p

2+ fiafo))2N, i=] X0))

7 LOlN, i) T Gy ST, 48 (0 o NP 1Y s
2+ 1221 » YE a Ua—Ju 9Jea— 12 —@(Ja—Ju — ) (Je2—J12
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L(p, q) are the likelihoods (1) obtained by fitting only the specified para-

meters. It can be shown that, ignoring terms of order D3 or higher,

k = ND*/p(1 - p)a(l—g)
= N#?, (10

where 72 is the squared correlation of gene frequencies. 'The chi-square test
proposed by Sinnock and Sing (19725) is equivalent except theirs is obtained
by using goodness-of-fit rather than likelihood arguments.

(ii) Diploid identification: A codominant, B dominant

There are now six phenotypes, with the observed numbers shown in
table 1 (d) and expected frequencies obtained by summing the appropriate
frequencies for B codominant in table 1 (b) (i.e. columns 1 and 2). The
likelihood equation can be written down using these frequencies but, for
solving the equation, we again adopt the chromosome counting method.
The equations are (ignoring * hats > on estimates)

_1 2N (i +f1fis) . Nas(fiafor +funfan) ] 1
Ju 2N | fH+2fi1fiz +f11f21+f11fzz+f12f21 (112)

_ 1 | 2Ny, fiafi IN Niy1fi2f01 N ] 11b
fiz 2N | +2f11f12 " 1‘Z-I-f11fz1'l‘f11f2:z‘|‘f12f21 T (110)
for = 1 [ Noi(fiafos fiafas) +.2N321(f§1 +f21fzz):, (1)

2N | fisforHfiaSaz+frizfo F21+2f21f22

=_LF N21f11f22 N 2N31f21f22 2N :I 11d

Ja2 2N | firfar+f1afar 12 i 22+f§1+2f21f22 TN | (1

Summing equations (11a) and (11b), we find that for the codominant gene,
4, the estimated frequency, , is given by the marginal frequencies,

p =N, +IN,)/N. | (12)

But we notice that the sum of (11a) and (11c) does not simplify in this way,
so we obtain the rather surprising result that the ML estimator of gene
frequency of a dominant gene suspected of being in disequilibrium with a
codominant gene is not given by the marginal frequencies. Similarly, D is
not obtained explicitly, so we need to retain two of the equations (11), for
example (1la) and (llc) and express f;, and fp, in terms of §, f3; and A,.
These equations are iterated to obtain a solution for f;; and f,; and conse-
quently § and D. Since ¢ is unlikely to depart far from the estimate given
by the marginal frequencies, a suitable starting value for the iterations is
obtained using 1—¢ = (N.,/N)* and f, = (Ng/N)E.

The sampling variances of all of the estimators can be found as before,
using (6), but with the subscript j taking only two values. The appropriate
frequencies y;; and derivatives dy,,/0t, are given by summing the first two
columns in tables 1 (b) and 2, respectively. Explicit formulae for the variances
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or covariances involving the codominant gene 4 can be given, however.
These are the same as when B is codominant also, i.e.

V(p) = p(1—p)[2N (13)
~ cov(p, §) = DJ2N, cov(p, D)= (1-2p)D/2N.
When D = 0, all covariances are zero and

V(@) = g2—q)/4N, V(D)= p(1-p)q(2—q)/2N; (14

and we note that V() is that for a single dominant gene.
The likelihood ratio criterion (9) for testing D = 0 is, approximately,

k= 2ND*[5(1—~ )42~ )] (15)

(iii) Diploid identification: both A and B dominant

There are only four phenotypic classes (table 1 (e)), so the ML estimators
are the obvious ones, namely

C P=1-(Ny /NP5, g=1-(N/N)* and fr, =(N/N)*  (16)
giving
D= (Nz“z/N)%—(Nz.N.z)%/N 17
{Turner, 1968; Cavalli-Sforza and Bodmer, 1971).
The sampling variances of the estimators can be found using (6), but

after summing the first two rows and columns in tables 1 (b) and 2. The
only explicit formulae not involving a large number of terms are ’

V(p) = p(2—Pp)/AN, V(4) = q(2—q)/AN (18)
and the estimators are correlated. When D = 0, §, § and D are uncorrelated
and

V(D) = p(2—~p)g(2—g)/4N. (19
The likelihood ratio criterion (9) is, approximately,
k = 4ND*[[ 2~ P42~ (20)

which differs from that given by Cavalli-Sforza and Bodmer (1971, p. 285)
in that a term in D3 has been ignored.

(iv) Haploid identification
A sample of n chromosomes'is taken from the population and identified
by an appropriate method (e.g. by test crossing or making an isogenic line)
with the observed numbers shown in table 1 (a). The observed chromosome
frequencies are their ML estimators, i.e. f“ = nﬁn, 50
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We note that, when D = 0, the estimates are uncorrelated and

V(D) = p(1-p)g(1—g)/n. (23)
The likelihood ratio criterion (9) is, approximately,
k = n#?

and £ is the usual chi-square statistic in a 2 x 2 contingency table (Hill and
Robertson, 1968).

3. EXAMPLE

Suitable data for diploid models have been given by Cleghorn (1960)
on the M/N, S/s blood systems in man, and these were also used by Bennett
(1965). The data are given in table 3 (a), and we note that both loci are
codominant.

TasLE 3(a)

Cleghorn’s data on numbers observed for the M|N and Sfs loci and the
designation of the alleles in this paper

Genotype SS Ss s
Designation BB Bb bb Total
MM AA 57 140 101 298
MN Aa 39 224 226 489
NN aa 3 54 156 213
Total 99 418 483 1000

Xy =208 X =568 Xy =099 Xy =592

Data in 3(a) reallocated:

3(b) B dominant 3(c) A and B dominant

B- b Total B- b Total
44 197 101 298 A~ 460 327 787
Aa 263 226 489 aa 57 156 213
aa 57 156 213

Total 517 483 1000
Total 517 483 1000

(1) A and B codominant

From (3), = 0-5425 and ¢ = 0-3080, and with these values inserted
into (4) we obtain the chromosome counting formula for iteration

f11 = 0:1465+0-112f, ,(0-1495 + f,)/(0-16709 — 0-701f, ; + 2/ %)

The starting value (5) is f;; = 0-23791. After 11 iterations successive values
of f;; differed by less than 108, g1V1r1g a solution of fn = 0-2370976; and
from that D = 0-0700076, agreeing with Bennett’s value of D = 0-07001.

The estimates, together with their standard errors and correlations {computed
by replacing the parameter values by their estimates in (6), or in (7) where
possible), are summarised in table 4. More figures than are significant are
shown for comparison with estimates from the other models. We see in
table 4 that D differs significantly (P <0-001) from zero, using the likelihood
ratio (9) or the approximation to it (10). As Bennett (1965) showed with
this data, there is a good fit to Hardy-Weinberg equilibrium: the residuak
chi-square (from likelihood ratio test) after fitting p, ¢ and D is 3-3 with
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5d.f). Bennett (1965) gave the standard error of D as 0-00596; this value
differs slightly from that in table 4, largely because Bennett ignored co-
variances between the estimators: he assumed V(D) = m3}, which he
computed by differentiating the likelihood directly.

TABLE 4
Results of analysis of data of table 3

Loci codominant A, B A —_
dominant — B A, B
Estimates P 0-54250 0-54250 0-53848
q 0-30800 0-30474 0-30502
D 0-07001 0-07048 0-07422
Standard errors _§ 0-01114 0-01114 0-01403
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the diploid method gives a lower variance for the same number of observa- § tl}é

tions, and E <1 if the haploid method gives a lower variance. We recall § ~ dist
that a single observation is either the identification of one diploid individual, f  Pro

or the identification of the allelic content of one chromosome, which may be clagy
one observation on an 1sogemc line or one test cross progeny. :

The case of most interest is where the population is near linkage equ111b-
rium, or we wish to test the null hypothesis that D = 0, and fortunately this ALL
has given us the simplest solutions. The results can be summarised as _
follows:

Haploid identification: ot

~ CEP:
V(D) = p(1~p)a(1—g)/n = nV(H)V(Q). |
Diploid identification: . |
- VD) =4NV(HV(@) -
and the efficiencies for the different models are related to the accuracy of ELA
gene frequency estimation: Fral

A, B codominant E=1 o

A4 codominant, B dominant E=(1-¢9)/(1-%¢) o

4, B dominant E=[(1-p/A=ipIN -9)/(1~39)] - xof

If both loci are codominant, typical for biochemical variants, we see that -

D has the same variance when estimated from diploids directly as from a
sample of the same size of extracted chromosomes or test crosses, which MU
requires much more labour. Some examples have also been computed for v
D # 0 for the double codominant case, with g, ¢ = 0-1, 0-25, 0-5 and g <p. *
It turns out that £ £ 2, only approaching E = 2 w1th p =g =05 and
D—+0-25, but E> 1 over most combinations of p, ¢ and D. The only cases PR
with E <1 are listed below, together with the lowest values attained:

(9, q) = (01,0-1), —0-010<D <0, minimum E = 0-74 sy

(9, q) = (0:25,0-1), —0-018 <D <0, minimum £ = 0-91

(9, ) = (0-25, 0-25), —0-031 <D <0, minimum E = 0-97.
Therefore, even when D # 0, the diploid method is likely to give better |
estimates, D, for a given input of labour.

Returning to the case of D = 0 and considering dominant genes, we see TU
that the diploid and haploid models have similar efficiencies if the dominant '
genes are at low frequency; but if they are at high frequency, the chromo- wy
some or test cross method may be worth while, just as it would be if we were 7

interested in estimating gene frequencies.

This analysis has been restricted to two loci, but some prehmmary studies
have been carried out with more. It appears that, if all loci are codominant,
the efficiency of the diploid relative to haploid method of estimating the dis-
equilibrium between ¢ loci, under the null hypothesis of equilibrium, is equal
to 22-¢, This equals 1 for 2 loci, } for 3 loci, % for 4 loci, and so on. Thus for
three loci the haploid method would be justified only if it required less than
twice the labour, per individual scored, than the diploid method. It is
interesting to note that the diploid method is twice as efficient for estimating
gene frequencies, since two genes are scored per individual, and this efficiency
of 2 is obtained by setting ¢ = 1 in the above formula. In effect we lose half
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\riance for the same number of observa- " the information on D in the two locus diploid cases because we cannot
hod gives a lower variance. We recall § distinguish between the coupling and repulsion heterozygotes, and a greater
- identification of one diploid individual, proportion with more loci when there are several multiple heterozygote
ntent of one chromosome, which may be classes.

or one test cross progeny. . ’ .
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